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Analytic Determination of the Capacitance Matrix
of Planar or Cylindrical Multiconductor
Lines on Multilayered Substrates

Dorel Homentcovschi, Member, IEEE, Giovanni Ghione, Member, IEEE,
Carlo Naldi, Senior Member, IEEE, and Radu Oprea

Abstract— An exact analytical expression for the Maxwell ca-
pacitance matrix of a multilayer, multistrip planar or cylindrical
line is derived by solving the dual series equation system of
the problem by means of a Volterra boundary-value problem.
The solution is expressed in terms of some infinite matrices with
very good convergence properties. Numerical examples show that
the method yields accurate results and is also computationally
effective for lines having a large number of conductors.

I. INTRODUCTION

ECENT ADVANCES in integrated circuit technology

have made multiconductor transmission lines an impor-
tant component not only in microwave and millimetre-wave
applications, but also in high-speed digital IC’s. Although an
accurate treatment requires the full wave analysis, the quasi-
TEM solution is a good approximation at low frequencies;
moreover, the solution obtained by means of the quasi-TEM
approximation can be taken as the basis for solving the full
propagation problem.

The literature on this subject is extensive; in order to
emphasise the different mathematical techniques used, we
briefly review some theoretical methods.

Wheeler [1] used approximate conformal mapping and
an interpolation technique to calculate the capacity of an
inhomogeneous microstrip. Analytical or quasi-analytical so-
lutions have been provided for a limited number of cases
and for certain particular geometries [7]-[11]. On the other
hand, several numerical approaches based on Green’s function
integral formulations of the problem have been proposed for
the analysis of microstrip structures. Bryant and Weiss [2]
treated the dielectric vacuum boundary by means of a dielectric
Green’s function. Yamashita and Mittra [3] presented an
analysis based on a variational principle. Analysis of various
planar transmission lines have been carried out in the spectral
domain by Itoh and Mittra [4]. The spectral domain method
was applied to the more general case of a multiconductor
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line in [5], [6]. Medina and Horno [15] developed quasi-
analytical methods for speeding up the evaluation of spectral
series.

Recently, several authors approached the problem of the
exact analysis of microstrip structures. Thus, Fikioris et al.
[12] have given an accurate quasi-TEM study of the boxed
microstrip line printed on an isotropic substrate based on the
regularization of the Carleman’s integral equation. In [13]
an analytical solution is given to the microstrip problem
based on a special representation formula resulting from some
complex-variable boundary-value problems. In [14], the same
method is applied to the full wave solution of the microstrip
problem.

This paper provides an analytical determination for the ca-
pacitance matrix of planar or cylindrical multiconductor lines
embedded in a multilayered medium. The analysis method
is developed for a cylindrical structure; planar structures can
be readily analyzed, since they are amenable to cylindrical
structures by means of an intermediate conformal mapping.
The solution is exact, but it is expressed by means of some
infinite matrices. These matrices have good convergence prop-
erties; this confers to the method very attractive features. The
analysis is based on the reduction of the singular parts of
the series equations of the problem to a Volterra boundary-
value problem. The existence conditions for the solution of this
boundary-value problem yield the desired capacitance matrix,
and the analysis can be also adopted to compute the electric
field inside the structure; in this case, it needs also a method
for speeding-up the convergence of the infinite series involved
in the field expression.

Section II describes the geometry of the cylindrical multi-
conductor line and how the planar line structure is mapped
into it. In the next section, the cylindrical multiconductor line
problem is formulated and its solution is reduced to a system
of dual series equations. In Section IV the mentioned system
of series equations is transformed by using some boundary-
value problems in complex plane into an infinite system of
algebraic equations. This also yields the Maxwell capacitance
matrix of the line, expressed by means of some infinite
matrices. The case of strips placed on different cylindrical
surfaces and that of multilayered multiconductor structures
are considered in Sections V and VI. Numerical examples
provided in Section VII show how the method applies to the
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Fig. 1.

Two-layer cylindrical multiconductor line.

analysis of different practical line structures: a single strip
or a pair of strips inside a rectangular box, a system with
many coupled strips, a suspended line, and some multilayer
structures.

II. PLANAR LINES AND CYLINDRICAL LINES

It is well known that one of the methods for studying
the cylindrical multiconductor stripline transmission lines,
operating into a quasi-TEM mode, is to transform them
by a suitable conformal mapping into an equivalent planar
structure [11], [21], [22]. Furthermore, the capacity matrix of
the cylindrical structure can be expressed by means of the
Maxwell capacitance matrix of the equivalent planar structure.

In this paper we reverse the procedure: first we put into
evidence an efficient method for determining the capacitance
matrix of a cylindrical structure and, further on, we charac-
terise the planar equivalent structure by using this matrix.

We begin the analysis with a two-layer structure, a more
general case will be addressed in Section V. The cross-
section of the cylindrical multiconductor transmission line to
be analysed is shown in Fig. 1. It consists of three surfaces
S51,9, S2; the cylindrical surfaces S7 and Sy (of radii rq
and rg, respectively) are grounded and the circuit surface
S separates two different dielectric media of relative dielec-
tric constants e1,e2. On the circuit surface are placed N
conducting strips of zero-thickness [a;,b;], (j = 1,...,N),
with arbitrary widths and spacing. We normalize all linear
dimensions with respect to the radius of the circuit circle and
we characterize the electrodes position by the angles «;, §;,
(j=1,....N),—7 < a1, 0n < 7. Let aj = exp(i - a;),b =
exp(i-B;), (4 =1,...,N),any1 = a1 +2- 7. We denote by
D1 the domain filled with the medium of dielectric constant
g1 and by Dy the other domain.

Let us consider now the planar structure in Fig. 2. It consists
of N conducting strips of zero thickness placed on a dielectric
substrate between two parallel ground planes. We assume the

Fig. 2. Cross-section of a planar structure cell.

structure as being a cell of a periodic infinite system, hence
the boundary conditions on the lateral sides of the box result
from periodicity. By means of the conformal mapping

21,
z=exp| —i—
p LZ )

the considered structure is mapped into the cylindrical struc-
ture of Fig. 1. with parameters:

2 2
r = eXP(—%hl) o = eXp(%hQ)v

2m 2T
@y = “z‘bE\'—jJrla B = _—L_a?\f—jﬂ-

2.1

2.2)

As the capacity matrix is preserved by a conformal mapping,
it results that the Maxwell capacitance matrix of the system
in Fig. 2 is the same as the capacitance matrix of the system
in Fig. 1.

In the case where we have a structure consisting of p
conducting strips placed on a dielectric substrate inside a
ground box, we must have only electric walls on all the
box sides. This is why we consider, for the beginning, the
symmetrical structure given in Fig. 3, but with antisymmetrical
potentials. This assures an electric wall along the Oy’ axis. Let
C(2P) be the capacity matrix of the periodic 2p structure given
in Fig. 3. Then, the capacitance matrix of the boxed p-strips
structure is given by relation

(©) _ 20 A2
Ciy =Cif" = Ciy,

i2p—jt1r L= 1,..

. p- 2.3)

By taking a symmetrical charge on the strips of the structure
in Fig. 3, we can obtain also the capacity matrix of the
structure consisting of n strips placed inside a box with
magnetic lateral sides in the form

c™ = o) 4 o)
%7 2¥)

i 2p—j+1° (2.4)

t=1,...,p.

III. ANALYSIS OF THE CYLINDRICAL STRUCTURE

We consider the solutions of the cylindrical multiconductor
transmission line problem in the “quasi-static” approximation,
i.e. for the frequency range in which propagation may be
regarded as quasi TEM. Under quasi-TEM approximation,
the analysis of a coupled microstrip line with a nonmagnetic
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Fig. 3. Planar structure with antisymmetrical excitation used to analyze the
boxed line.

material is reduced to that of the capacitance matrix per unit
length.

In the quasi-TEM state, the electric field in domains D; and
D5 can be expressed with the aid of the electrostatic potentials
V(z,y), VO (z,y).

By the method of the separation of the variables in cylin-
drical coordinates, (r,¢) V(1) and V?) can be generally
expressed as

V@O(r, ¢) = ng(r 7y, 1)

—I—ZR 7,75, 1

7=12.

)(A!, cosné + B, sinng),

G.D

The two potential functions V1 (r, ¢), V@) (r, $) are solu-
tions of the Laplace equation in domains Dy, D, respectively,
satisfying the boundary conditions on the inner and on the
ground surfaces VI (r;, ¢) = 0 and V@ (ry, $) = 0 and the
continuity on the circuit surface

oo
V(1,9 =V@1,¢) =T+ Z(A'n cosng + Bl sinng).
e 3.2)
In (3.1) we have denoted
In (;Tl—)
R(Y (T7 T17T2) = )
n(3)
(5) 7 (%)
R,:f(’l', 71, T2) n n (3-3)
r2) _ [
(2) -(2)
The real constants ', A! Bl (n = 1,...,00) will be

determined by imposing the remaining boundary conditions
on the circuit surface. Thus, we must have

r+ Z(A;l cosng + B], sinng) =V,

n=1
for ¢ € (a,8),5=1,...,N, (34
and
avA(1,¢) v (1,¢)
p(¢) = —e2 or + e ar =0,
o€ By, 0541),5=1,...,N. 3.5

We denoted V; the potential of the strip (a;,b,) and p(¢) is
the surface charge density along the circuit surface. The total
charge on the circuit circle on the arc (o, @) is

[}
Q@) = / o(¢)dg)
v, ¢  avVA(L¢)

__/¢ 9 _ ]" dqsl
- o £ or &2 or )

(3.6)

Let UM (r, ), UP(r, $) be the harmonic conjugate func-
tions, i.e. the flux functions, of the potentials V(1 (r, ¢),
V@ (r, ¢). We have mgi_” = %ag;]) (§ = 1,2), and conse-
quently (3.6) can be written

o= ;

% [£.0D(1,¢) - 20 (1, 6| dg’
= (aU®(1,4) - U1, 9))

- (€1U(1)(1,a1) - EQU(z)(l, Oél)).

(3.7

Hence, the boundary condition (3.5) becomes
elUD(L,¢) - e2UP(1,9)

J
= Z g —(e1+e2), ¢€(Bj,a541), (3.8
l==1
where g; is the charge on the strip (o, §;) and (g1 +e2) =
elU(l)(l, ) — azU(z)(l,al) is a constant.
The Cauchy-Riemann equations in polar coordinates enable
us to write the flux functions in the two domains D1, D5 as

U9 (r, )
. 1N

Inr;

o
+ ZR:(A’R sinng — B, cosng), j=1,2.
n=1

3.9)

Consequently, the boundary condition (3.8) along the slots
becomes

o0

> (1+8(n))(B), cosng — A, sinng)

n=1

i 6o &
— (a1 +52)—1(qu - o : ZQZ) -

=1 =1
¢ € By aj41), j=1,...,N, (3.10)
where
2n 2n
8(n) = Tl 22 T (3.11)

€ +62 1—r2n g e 1 -1
1

and the constant I" has been expressed in the form

T = Zl =191

27r(51 + 52)5*
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where

* €2 €1 -1

= - . 3.12

¢ (ln ro  Inrg ) (e1+22)™, (3.12)
in terms of the total charge on strips.

The unknown quantities in the representation formulae

(3.1) and (3.9) are the coefficients T', A/, By : the dual series

equations for determining them are given by (3.4) and (3.10).

IV. ANALYTICAL APPROACH TO THE SOLUTION
OF THE DUAL SERIES EQUATION SYSTEM AND
DETERMINATION OF THE CAPACITANCE MATRIX

We shall transform the series Equations (3.4) and (3.10) by
putting into evidence their singular part. Thus, we first consider
the new unknown constants A4,,, B,,, given by the relation

A}, —iB,, = (A, —iB,) - (1 — n(n)), 4.1
where
5(n R
n(n) = %7 n(n) =00} +137), n— o0, (42)
and ¢ is the imaginary unit.
The two series equations become
r+ Z(A" cosng + B, sinng) = fi(4),
n=1
¢e€(a,,B;), j=1,...,N, (4.3)
> (Ansinng — By, cosng) = g,(4) + 7,
n=1
¢€(/Bjya1+l)ﬂ j:17~~~7N7 (44)
where we have denoted
=V, + Z n(n)(An cosng + B, sinng),

N
9y(#) = (e1 +e2)~ <Z q — a1 lﬂ) . 4.5)
=1

In fact, as can be seen from (4.2) we separated in the left-
hand sides of these relations the singular parts of the series
equations. These singular components are responsible for the
behaviour of the potential function at the strip edges.

We consider, for the beginning, the right-hand sides of (4.3)
and (4.4) as being known. Then, we introduce the complex-
variable function:

F(z) =T —iv+ Y (An —iB,)2", (4.6)
n=1
defined in the domain |z| < 1. Then, the dual series equations

(4.3) and (4.4) can be written in the form

{RG{F('Z)} = fy(¢) for z € (a,,b,),
Im{F(z)} = 9](¢) for z € (bJ7a’]+1)7

j=1,...,N,
j=1,...,N.
4.7
The relations (4.7) yield the boundary values along the unit
circle of the real part (along the strips) and the imaginary part
(along the slots) of the analytic function F'(z). The problem of

determining the function F'(z) by means of these conditions
is known as a Volterra problem [18], [10]. In order to obtain
the solution F'(z) we consider the auxiliary function

N By—ey z2—0b;
H(z):H (e‘l ’ \/ z—aj>’

j=1
where
< - bf) = e (4.8)
Z— @
z2=0
Along the unit circle we have
n_ JIH(E) on the arc (b;,a,41),
H(z) = {L -|H(2')] on the arc (a,,b,). (4.9)
We now define a new unknown function
F(z)
= . 4.10
Ge) = s (4.10
Along the strips we have Re{G(z')} = —%md along
the slots Re{G(2")} = lr%(,z)ll)} Then, (4.7) enables us to

determine the values of the real part of the function G() along
the whole unit circle

Re{G(2)} = ~|H ()| - [,(¢)

for 2/ = e € arc(a,,b,),  (4.11)
Re{G(2')} = [H(2")|"".9,(¢),

for 2’ = ' € arc(b;,a,41). (4.12)

This is a Dirichlet boundary-value problem for the real part
of the complex function G(z). The complex function G(z) can
be explicitated by means of Schwartz’s formula [18]-[20]; this
yields the function F'(z) = 1H(2)G(2):

H(z) f](gb) ’
o= z::l LR
;, Dy
+Z,,/ I(z )dz + Q) , (4.13)

where a,b, and b,a,;1 are symbols for the arc(a;,b;) and
arc(b,,a,41); H(0) is the complex conjugate of I(0); and ¢
is defined as in (4.11) or (4.12).

The unknown coefficients A,,, B, are in fact the Mac Laurin
expansion coefficients of the functions F(z). The infinite
linear system for their determination results by matching the
coefficient of z"(n = 1,2,...) on the two sides of relation
(4.13). We shall write this system in the matrix form

Rx =SV + T4q, (4.14)
where
X = (A, By, Az, Bs,...),
Vo= (Vi Vi),
d = (g1 Gue). 4.15)

The linear system (4.14) is explicitated in the Appendix.
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Fig. 4. Cross-section of a three-layer (two-surface) cylindrical multiconduc-
tor line.

The function F'(z) has a definite physical meaning in the
case n(n) = 0 (ie. r1 — 0,79 — 00): it is just the complex
potential function F'(z) = V +:U. Therefore, it must be finite
along the unit circle. Thus, to compensate for the singularities
of the function H(z) in the ay, points, the expression in braces
in (4.13) must vanish in all these points. Hence, we obtain the
existence conditions:

'+ ay / ’
H(0) ]Z |H (= I(Z’ - ak)dz
Nl 9,(9) ,
t2 g / e —ay @ =0
=t bya; 41
k=1,...,N. (4.16)

The coefficient of 2° in the Mac Laurin expansion must be
equal to F'(0) = T —i~y; this yields an additional compatibility
condition besides the relations (4.16). All the N + 1 compat-
ibility conditions have the same imaginary part, which is in
fact an identity. We eliminate the constant ~ and finally the
compatibility conditions (4.16) can be written in matrix form

DX = AV + Bq 4.17)

Again, the linear system (4.17) is explicitly given in the
Appendix.

If we eliminate the unknown infinite vector X between the
(4.14) and (4.17) we finally obtain the capacitance matrix of
the given system:

C=(D-R"'T-B)'-(A-D-R-S). (4.18)

This relation gives an exact expression of the capacitance
matrix. To obtain a numerical estimation we must truncate
the infinite matrices. The good convergence of the method is
assured by the function 7(n) which enters into the terms of
the matrix D.

367

V. THE CASE OF TwO CIRCUIT SURFACES

We outline now how the method applies to the case where
more circuit surfaces are present. For the sake of simplicity,
we only consider a line with two circuit surfaces; the general
case can be dealt with in a similar way. The structure is
shown in Fig. 4. It consists of four surfaces Sy, Sy, S2, 53 of
radii rg,71,792,73, respectively. The cylindrical surfaces Sg
and S, are grounded and the surfaces S; and Ss, separate
regions D, Dy, D5 filled with different dielectrics (of relative
dielectric constants 1, e9and 3). On the circuit surface Sy are
placed N1 conducting strips characterized by angles o ;, 51,
( =1,...,N1) while on the Sy circles are placed N2 con-
ducting stnps of angular abscissa oy, 52, (j = 1,...,N2).
We denote by V{)the potential function in the dornain D;.
Then, we have

VO(r, ¢) = TRy (r,r9,71)
+ i R (r,ro,m1) (A cosng + B,V sin ng)
"~ n<r<m, G

V@ (r, f) = TP Ry (r,r1,72)
+ i R (r,r1,79) (A;fz) cosng + B;(2) sin nqS)

= 1"(?11)—1;5 (ryr2,71)
+ i R, (r,r9,71) (A;l(l) cosng + B,V sin n¢>
"~ ri <r<re, (5.2)

VO (r,¢) =T Ry (r,r3,72)

+ Z R, (r.r3,72) (A;l@) cosng + B, sin nqS)

n=1

ro <1 <13, (5.3)

These expressions ensure that the potential function van-
ishes on the grounded surfaces and is continuous in the whole
structure. Along the circuit surface we also have:

U (r,¢) - ——UD(r.9)

€1+52 1+ &2

= Z 1+ 811(n)] (B,Sl) cosng — AV sin nqﬁ)
n=1

+ Z 812(n) (B,(lz) COS Tp — Agf) sin nqS)
=1

QW
 2m(eg Fep)

U®(r,¢) -

S4

Z—U(r,9)

€2+€3 g9 + €3

= Z 821(n) (B(l) cosng — A(l) sin nqS)

+ Z [1+ 822(n)] (Br(f) cosng — A sin ngb)

Q(2)

- 5.5
27(ea +€3) ¢ (5:3)
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where
. 2€J 7’]221 2€j+1 szn
8y (n) = . n _ . 2n Te 20 _ ,9n’
g5t &41 T, rly o & tEi T T
(1 =1,2), (5.6)
2e9 ri-ry €1+ €2
S1a(n) = | 81 = 51, 5.7
12(n) TR T 2= g, 5.7
1)
AR - T PYONC B
27 n2 In-t In 2
™ To ™
(2)
OO |2 e 2 g, (5.8)
2m In-2  In-2 In 22
79 1 T1

The remaining boundary conditions give the system of dual
series equations for determining the coefficients A,,, B,, in the
form

+ Z (Aﬁf) cosng + B sin n¢)
n=1

= Vj(T) + Z (er(”)Agll) + mz(n)Aﬁf)) cosng

n=1

+ Z (7],1(71)37(11) + 72 (n)B,(Lm) sinng,
n=1

¢ € (arja/g’r’])v (] = (5.9

i (ASIT) sinng — B cos m;ﬁ)

n=1

7
= (&r + 5r+1)—1 (Z q](T)
=1

for ¢ € (lgr,JaaT,j+1)» (.7 =1,.. 9

In the above equations the superscript r takes the value

= 1 for the circle S; and the value r = 2 for the other
circuit surface. The system of equations (5.9) and (5.10) is
written in a form suitable for applying the method developed
in Section IV: the singular part of the integral equation is
separated in the left-hand side of this equations, where the
functions ny1(n), ..., n22(n) are determined in terms of the

1,...,N7)

Z (T))

NT) (5.10)

radii 7g,...,rs and of dielectric constants &1, €2, €3.
Finally, we obtain the compatibility conditions
D11§(1) + D12§(2) = A11;(1) + A12;(2) + B11a(1)
+ 3126(2)
D21_)Z(1) + D22;(2) = Azl;”(l) + Azzv( : + lefi(l)
+ 3226(2) (5.11)

and also two infinite systems of equations for determining the
two sets of Fourier coefficients

—(1) —(2 (1)

—(2)
Riix " +Rizx  =Spv

+ SiaVv
—(2)
+ Ti2q

—(1)
+Ty19

—(1) —(2) —(2) —(2) —(1)
R21X  +RaoaX =821V 4822V +Taiq
—(2)
+T22q (5.12)
o o -1 —
Elimination of infinite unknown vectors x ,x  between

the systems (5.11) and (5.12) yields the desired Maxwell
capacitance matrix of the structure.

V1. MULTILAYERED MULTICONDUCTOR STRUCTURES

In order to show how our method applies in the case of
multilayered multiconductor structures we consider the case of
strips on a suspended substrate. The geometry of the problem
is given in Fig. 4. The domains D;, D5 are filled with air
(e = e3 = 1) and the strips are placed on the surface S5. In
this case we shall consider again the expression of the potential
given in Section V. There are no charges along the circle 57,
hence the relation (A2.7) yields:

(1+ b () (4D —iBY)

+ 81a(n) (AP~ iBY) =0, ©.1)

QW =o. (6.2)

The relations (6.1) and (6.2) determine the coefficients
A,gl) Bm in terms of the coefficients A( ) B( ) and also
coefficient I') as a function of I'"(?). Finally, the boundary
conditions along the circuit surface S5 take the form (4.3) and
(4.4) where

S12(n) - b21(n
8(n) = 6aa(n) — —————‘i( +)511?;() ), (6.3)
-1
o — 1 &3 €9 2 €1 + €9
etealn? n2 lnl a2
T2 T1 To ™
6.4)

The solution is obtained by the relations given in Section IV
for the above values of parameters. The general case of
multilayered structures can be treated in the same way; in
fact, the solution of the problem is reduced to the one for a
single layer, but with proper coefficients §(n) end &*.

VII. NUMERICAL RESULTS

The theory developed in the previous sections was imple-
mented into a computer program written in the MATHCAD
language running on a PC-AT 486DX. The clock frequency
was 25 MHz and the program operates with 15 significant
digits. We applied this program to various test problems.

1) In order to compare the results given by this method with
some exact analytical formulae we considered the case
of a single strip on a cylindrical stripline-like microstrip
transmission line. In this case analytical formulae are
available for capacitances expressed in terms of elliptic
functions [11]. We found very good agreement in both
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2)

3)

cases. Thus, for example, if we take
h = 1477575743, ry=e ",
ay=—p =7/3, [a=

the method gives

Ty = eh,
-y = 2w /3,

C(1,1) = 15.795598577, C(1,2) = —1.302715389,

by considering only 6 terms A,,, B,,. These results coin-
cide within 10 digits with those given by the analytical
formulae.

In the case of a symmetrical strip of 2¢-widths, inside
a L x (hy + hs) rectangular box we compared the
results given by our method with the results obtained
in [12] on the basis of an analytical approach based on
Carleman-type singular integral equation. These results
are also compared with the values obtained previously
[16] by using two or three different methods: transverse
modal analysis (TMA), Potential Theory (PT), method
of moments (MM), and approximate conformal map-
ping (ACM). The characteristic impedance is given in
Table I for various values of geometrical and electrical
parameters.

The results are in good agreement with those obtained
previously. Due to the fact that we must consider on
the circle a structure with two strips, the number of
coefficients involved in our analysis is about 20.
Comparison with the spectral-domain method: A number
of planar structures were analysed with the present
method, and the results compared with those obtained
from a spectral-domain method quasi-TEM technique
for multiconductor lines on multilayered dielectric sub-
strates [5], [6]. The implementation described in [6]
makes use of edge-singular basis functions for the strip
charge density; the spectral-domain superposition inte-
grals are evaluated by turning them into discrete sum,
which are then truncated according to a relative conver-
gence principle. The spectrum is discretized by imposing
periodic boundary conditions or by considering a line
laterally bounded by electric or magnetic walls. As a
first set of test structures, three four-conductor coupled
microstrip lines were chosen with uniform spacing sand
strip width w; periodic boundary conditions were im-
posed, with the line centered into a box of total width
4 w + 5 s. The substrate dielectric constant is e, = 9
and the substrate thickness is h. The line dimensions
were chosen as follows:

Structure 1:  s/h = (n/2—2/3)/1n3 =~ 0.823;
w/h=2/31n3 =~ 0.607
Structure 2:  s/h = (w/2 —1/2)/1n2 = 1.545;
w/h=1/2In2 = 0.721
Structure 3:  s/h = (7/2 —1/3)/1In3/2 = 3.052;
w/h =1/31n3/2 ~ 0.822
Thus, from structure 1 to structure 3 the coupling be-

tween strips decreases and the coupling to the ground
plane increases. Since the structure is strictly periodic,

369

the capacitance element C; , only depends on |i — j|.
The results obtained are summarized in Table II; only
the first row of the capacitance matrix is shown. The
spectral-domain results were computed with 10 basis
functions per strip and a number of spatial frequency
samples related to the relative convergence criterion.
The agreement between the two methods is fairly good
both for the tightly coupled and for the loosely coupled
line; however, the accuracy achieved by spectral-domain
method in estimating the coupling between distant lines
may be critical.

In order to see how the method works in the case
of a line with a large number of strips we consider a
cylindrical microstrip line with 32 equally spaced strips.
The strips has the same central angle and this is equal to
the slot central angle. We take r; = 0.5,e; = 9,60 = 1.

The same structure was analysed through the spectral
domain method by first turning it into a planar one by
means of conformal mapping. The results obtained from
the two methods are reported by showing the first row
only of the capacitance matrix; for C(1,5),16 < j < 32
one must remember that C(1,j) = C(1,34—3), =
18...32. The result in brackets was derived from the
spectral domain method; the other from the present
approach. One has

C(1,1) = 12.909[12.953]

C(1,2) = ~4.074]—4.066]
C(1,3) = ~0.695[—0.678]
C(1,4) = ~0.233[—0.218]

C(1,5) = ~0.095]—0.083]
C(1,6) = —0.044[—0.034]
C(1,7) = ~0.022[—0.014]

C(1,8) = —0.012[—0.006]
C(1,9) = ~0.0077[—0.0024]
C(1,10) = —0.0055[—0.0011]
C(1,11) = —0.0042[—0.0004]
C(1,12) = —0.0035[—0.0002]
C(1,13) = —0.0031[—0.00005]
C(1,14) = —0.0028[—0.00005]
C(1,15) = —0.0026][+0.00001]
C(1,16) = —0.0025[—0.00003)]
C(1,17) = —0.0025[+0.00002]

The computation with the spectral domain method was
carried out with 5 basis functions per strip. Also in
this case, the accuracy achieved by the spectral method
becomes poor for loosely coupled strips (notice that for
j > 11 the result from this spectral domain method
is hardly meaningful, although the computation was
performed in double precision). The above analysis
required about 15 minutes CPU both for the MATHCAD
implementation and for the FORTRAN implementation
of the spectral domain method running on a VAX
STATION 3100.
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TABLE I
COMPARISON OF Z0 FOR A SINGLE STRIP WITH EXISTING VALUES
ho/hy [ L/2c [ 2/ [ eyfe, | Zo(Q) | Zo@) 1121 | TMA[16] | PT[16] [MM [16]] ACM [16]
5 10 1 9.6 | 49.153 49.08 48.4 48.5 - -
9 10 2 9.6 33.72 33.63 33.1 32.8 - -
5 10 | 08 | 9.6 54.52 54.45 53.8 53.9 - -
5 6 1 9.6 | 48.62 48.60 47.9 48.5 - -
5 10 | 04 ] 96 | 70.40 70.38 69.7 70.9 - -
9 10 1 6.0 61.32 61.24 60.49 - 62.71 60.97
9 10 4 6.0 | 26.26 26.09 25.95 - 27.30 26.03
9 10 | 04 | 6.0 87.04 87.41 86.30 - 91.37 89.91
TABLE 1I
a: PRESENT APPROACH: b: SPECTRAL DOMAIN METHOD
Structure Method Cy Cia Ci3 Cua
1 a 14.762 -1.866 -0.198 -1.866
1 b 14.792 -1.904 -0.224 -1.904
2 a 15.439 -0.731 -0.093 -0.731
2 b 15.430 -0.745 -0.106 -0.745
3 a 16.3645 -0.1509 -0.0378 -0.1509
3 b 16.369 -0.157 -0.044 -0.157
TABLE I
THE PROPAGATION CONSTANT FOR A CYLINDRICAL STRUCTURE WITH SIX STRIPS LOCATED ON TwWO LAYERS
Separation | Number of 1-st 2-nd 3-rd 4-th 5-th 6-th
angle y |coefficients| mode mode mode mode mode mode
(degrees) (17]
0.00 12 2.045162 | 2.194719 | 2.389983 | 3.073252 | 3.152087 | 3.403444
0.00 16 2.04508 [ 2.194718 | 2.39001 [ 3.073376 | 3.152093 | 3.403722
0.00 [17] 2.0722 2.1945 2.3896 3.0725 3.1504 3.4138
35.86 12 2.052133 | 2.234518 | 2.417062 | 2.686693 | 3.102286 | 3.354923
35.86 16 2.052069 | 2.234541 | 2.417061 | 2.686714 | 3.102287 | 3.35495
35.86 [17] 2.0768 2.2354 2.4215 2.6929 3.1001 3.3641
106.17 12 2.093422 | 2.275377 | 2.337481 | 2.430684 | 2.78487 | 2.996957
106.17 16 2.09335 2.2754 2.33738 2.430698 | 2.784814 | 2.996659
106.17 [17] 2.1075 2.2978 2.3393 2.4311 2.7887 3.0065

4) We applied the method developed in Section V to the

5)

cylindrical multiconductor transmission line having two
layers of strips located at 71 = 2 and 7o = 3. Each of the
two layers of strips consists in three strips of 10.195°
central half angle and the strips on the same r circle
are 20.39° apart. We denote by - the separation angle
between the strips (e = o + v, 02 = Py +7v: j =
1,2,3). This problem was considered in [17] by an
iterative technique in spectral domain. In Table III we
give the propagation constants obtained by applying the
present method with 12 and 16, respectively, unknown
coefficients on every layer and for three values of
separation angle. For comparison the values given in
[17] are also shown. It is to be noted that the present
method and the results obtained in [17] are in very good
agreement.

As the last example, we computed the characteristic
impedance / and the effective dielectric constant €.

for a pair of coupled strips on a suspended substrate
inside a rectangular box. The cross-section of a boxed
microstrip line is shown in Fig. 5. The geometry consid-
ered is L = 5 mm, h; = 3.635 mm, Ay = 0.635 mm,
hs = 5 mm, 2¢ = 1 mm, the distance between strips
is 0.1 mm, &1 = g3 = l,eo = 9.6. This problem
was considered in [15] on a spectral domain formula-

+ tion combined with some methods for speeding up the
convergence.

We truncated the infinite series at 24 terms and in Table IV
the obtained results are compared with those given in [15].
Again, very good agreement is found between the present
method and the results given in [15].

VIII. CONCLUSION

A new method for determining the Maxwell capacitance
matrix of a coupled multilayer multiconductor microstrip
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Fig. 5.

_h1

Boxed suspended coupled strips.

TABLE 1V

CHARACTERISTIC IMPEDANCE AND EFFECTIVE DIELECTRIC
CONSTANT FOR SUSPENDED COUPLED STRIPS

Present method Results given in [15]
Zoaq 30.835936 Q 30.8360 Q2
Zeyen 182.87994 Q 182.87994 Q
€t ot 4.608939 4.608930
Eoff even 2.1366193 2.136619

line is given. The method applies to the case of cylindrical
structures as well as to the case of planar lines. The method
is based on solving the singular part of the coupled series
equations of the problem by means of a Volterra boundary-
value problem; the rigorous solution is expressed by means
of some infinite matrices that have very good convergence
properties. Applications are shown to several structures: iso-
lated and coupled strips inside rectangular boxes, multistrip
structures, suspended lines, and cylindrical structures with two
layers of strips. The method allows the capacitance matrix to
be evaluated with very high accuracy and is computationally
efficient also for the case of multistrip and multilayered lines.

APPENDIX

We give in this Appendix the computation relations involved
in Section IV. The Mac Laurin expansion of the function
F(z)/H(%z) must match the corresponding coefficients re-
sulting in the expansion of the brace in (4.13). We get for
m = 0:

T — iy

N
O EAC(O,j)Vj + (e1 +€2)

XZ(BCOJ qu BCSOji )

*Zﬁ(n) [(An — iBn)K2(n) + (An + iBn)K1(n)]
n=1
+ ili_(oz)” (A1)

and for m = 1,2,...

m-1
—2(I' = i)K1(m) =2 > K1(m — n)(Ay, — iBy)
n=1
N
-+ —1“(14 - iB ) = —EﬁAC(m )V
H(O) m m j:;; s J Vi
N j N
+ (61 +€2) Z <BC(m,j) }_J q — BCS(m, j) Zm)
g=1 =1 =1
= > n(m)[(An — iBn)Ks(n — m) + (A, +iB,)
n=1
X Kl(n + m)] (A.2)
Here we have denoted
dz’
A -7
C(m lH(ZI)| Zlfn-{—l
/ﬂj e 0,1 (A.3)
= m=0,1,... .
|H (6“’5)l
. 1 1 dz’
BC(m, j) = — / TH)| 77+t
bya;41
: / e 0,1,... (A4)
= — ——d¢, m=0,1,... .
T Jg,  |H(e*?)]
L1 o—ay 1 dz'
BCS(m;J) - ; / T IH(ZI)| SImFl
bya;41
- i/a’“ it PV
Tl w HER TN
(A.5)
1 Z/—’I"'—]. ,
= —— —————— = 0 1 2 e A6
Kl(r) 2 /Ce IH(ZI)le’ r Ly &y ( )
1 er——l ,
= o =1,2,... A7
K?(T) - L |H(z’)|dz’ T 325 ( )

In relations (A.6), (A.7) C, = U] 1{ay,b;) ie. the set of all
strips; we shall also denote by C the unit circle.

Likewise, the compatibility conditions (4.16) can be written
in the form

N
I'cos$ — ysin ¢ — ZA'(k,j)Vj + (g1 +£9) 71

J=1

N
XZ (B' k j)qu BS'(k, ) qu)

8

Z n){Re{I1(k,n) ~

—Im{I2(k,n) + I1(k,n)}B,} =0, k=1,2,...,N
(A.3)

I2(k,n)}A,
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Here we have denoted
H(0) = ¢*?, (A.9)
1
Al(k,j) = 27r/ |H(e1¢)| de, (A.10)
1 [+ ctgf5
B =5 [ e @
NS T
BS (k7.7) - 27T /3] 27{' |H(61¢)]d¢7
(k.j=1,...,N), (A12)
1 Z/ n ,
nen =5 [ e
(k=1,...N;n=1,2,...), (A.13)
1 Z/n ,
2em =5 | e
(k=1,...,N;n=0,1,...). (A.l14)

The numerical evaluation of the integrals (A.3-A.5) and
(A.10-A.12) can be performed by using a Chebyshev-type
integration formula

The complex integrals (A.6—A.7) and (A.13-A.14) along the
set C, of the strips can be replaced by integrals along a circle
Cy of radius greater than 1, or along a circle C inside the
unit circle. Thus, for example, we have by means of Cauchy’s
theorem

zm 1 2
—  d = ——,—/ _
o, H(Z')(2 — ar) i Jo, [H(Z)|(Z — ax)

+/ Z/n d/
o, —az,
c—c. H(Z)|(z' — ax)
(A.16)

__z_’"__dz, — l/ 2" ds’
o, HZ) (2 —ar) i Jo, [HEZ)|(Z' = ar)

+ _”D/n__d /.
/cacs HE(z—an)
(A.17)

Due to residue theorem the integral along the C circle
vanishes for n < 0 and the integral along the C; contour is
zero for n > 0. Hence, the difference of the relations (A.16)
and (A.17) yields

Zl’n ,
4=
j{ze H(2)|(2' — ax)

l?{ — d
2 Jo, HN G —ar)
n=0,1,... (A.18)

and

7{ A WA
o [HE(Z —a) ™~ 2

dz’,

n=12,... (A.19)

The integrals along the circles C7 and Cy can be computed
by using the trapezoidal rule and the Fast Fourier Transform
algorithm.
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