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Analytic Determination of the Capacitance Matrix

of Planar or Cylindrical Multiconductor

Lines on Multilayered Substrates
Dorel Homentcovschi, Member, IEEE, Giovanni Ghione, Member, IEEE,

Carlo Naldi, Senior Member, IEEE, and Radu Oprea

Abstract-An exact analytical expression for the Maxwell ca-

pacitance matrix of a multilayer, multistrip planar or cylindrical

line is derived by solving the dual series equation system of

the problem by means of a Volterra boundary-value problem.

The solution is expressed in terms of some infinite matrices with
very good convergence properties. Numerical examples show that
the method yields accurate results and is also computationally
effective for lines having a large number of conductors.

I. INTRODUCTION

R ECENT ADVANCES in integrated circuit technology

have made multiconductor transmission lines an impor-

tant component not only in microwave and millimetre-wave

applications, but also in high-speed digital IC’s. Although an

accurate treatment requires the full wave analysis, the quasi-

TEM solution is a good approximation at low frequencies;

moreover, the solution obtained by means of the quasi-TEM

approximation can be taken as the basis for solving the full

propagation problem.

The literature on this subject is extensive; in order to

emphasise the different mathematical techniques used, we

briefly review some theoretical methods.

Wheeler [1] used approximate conforrnal mapping and

an interpolation technique to calculate the capacity of an

inhomogeneous microstrip. Analytical or quasi-analytical so-

lutions have been provided for a limited number of cases

and for certain particular geometries [7]–[1 1]. On the other

hand, several numerical approaches based on Green’s function

integral formulations of the problem have been proposed for

the analysis of microstrip structures. Bryant and Weiss [2]

treated the dielectric vacuum boundary by means of a dielectric

Green’s function. Yamashita and Mittra [3] presented an

analysis based on a variational principle. Analysis of various

planar transmission lines have been carried out in the spectral

domain by Itoh and Mittra [4]. The spectral domain method

was applied to the more general case of a multiconductor
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line in [5], [6]. Medina and Homo [15] developed quasi-

analytical methods for speeding up the evaluation of spectral

series.

Recently, several authors approached the problem of the

exact analysis of microstrip structures. Thus, Fikioris et al.

[12] have given an accurate quasi-TEM study of the boxed

microstrip line printed on an isotropic substrate based on the

regularization of the Carleman’s integral equation. In [13]

an analytical solution is given to the microstrip problem

based on a special representation formula resulting from some

complex-variable boundary-value problems. In [14], the same

method is applied to the full wave solution of the microstrip

problem.

This paper provides an analytical determination for the ca-

pacitance matrix of planar or cylindrical multiconductor lines

embedded in a multilayered medium. The analysis method

is developed for a cylindrical structure; planar structures can

be readily analyzed, since they are amenable to cylindrical

strictures by means of an intermediate conformal mapping.

The solution is exact, but it is expressed by means of some

infinite matrices. These matrices have good convergence prop-

erties; this confers to the method very attractive features. The

analysis is based on the reduction of the singular parts of

the series equations of the problem to a Volterra boundary-

value problem. The existence conditions for the solution of this

boundary-value problem yield the desired capacitance matrix,

and the analysis can be also adopted to compute the electric

field inside the structure; in this case, it needs also a method

for speeding-up the convergence of the infinite series involved

in the field expression.

Section II describes the geometry of the cylindrical multi-

conductor line and how the planar line structure is mapped

into it. In the next section, the cylindrical multiconductor line

problem is formulated and its sclution is reduced to a system

of dual series equations. In Section IV the mentioned system

of series equations is transformed by using some boundary-

value problems in complex plane into au infinite system of

algebraic equations. This also yields the Maxwell capacitance

matrix of the line, expressed by means of some infinite

matrices. The case of strips placed on different cylindrical

surfaces and that of multilayered multiconductor structures

are considered in Sections V and VI. Numerical examples

provided in Section VII show how the method applies to the
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Fig. 1. Two-layer cylindrical multiconductor line.

analysis of different practical line structures: a single strip

or a pair of strips inside a rectangular box, a system with

many coupled strips, a suspended line, and some multilayer

structures.

II. PLANAR LINES AND CYLINDRICAL LINES

It is well known that one of the methods for studying

the cylindrical multiconductor stripline transmission lines,

operating into a quasi-TEM mode, is to transform them

by a suitable conformal mapping into an equivalent planar

structure [11], [21 ], [22]. Furthermore, the capacity matrix of

the cylindrical structure can be expressed by means of the

Maxwell capacitance matrix of the equivalent planar structure.

In this paper we reverse the procedure: first we put into

evidence an efficient method for determining the capacitance

matrix of a cylindrical structure and, further on, we charac-

terise the planar equivalent structure by using this matrix.

We begin the analysis with a two-layer structure, a more

general case will be addressed in Section V. The cross-

section of the cylindrical multiconductor transmission line to

be analysed is shown in Fig. 1. It consists of three surfaces

S1, S, S2; the cylindrical surfaces S1 and S2 (of radii rl

and r2, respectively) are grounded and the circuit surface

S separates two different dielectric media of relative dielec-

tric constants el, E2. on the circuit surface are placed ~

conducting strips of zero-thickness [aj, bj], (~ = 1, . . . . ~),

with arbitrary widths and spacing. We normalize all linear

dimensions with respect to the radius of the circuit circle and
we characterize the electrodes position by the angles aj, flj,
(j=l ,...,lV)r <al,l?N<~< Letaj=exp(i(i .aj), b=
exp(i. ~j), (j = 1, ..., N), ~N+~ = al + 2. T. We denote by
DI the domain filled with the medium of dielectric constant

c1 and by D2 the other domain.

Let us consider now the planar structure in Fig. 2. It consists

of N conducting strips of zero thickness placed on a dielectric

substrate between two parallel ground planes. We assume the

Y’ A
h,

I I
I

E2

I
I I

a’l b’, a’~ b’N

-L i

-hl

Fig. 2. Cross-section of a planar structure cell.

structure as being a cell of a periodic infinite system, hence

the boundary conditions on the lateral sides of the box result

from periodicity. By means of the conformal mapping

()271
~ = exp –i—z’ ,

L
(2.1)

the considered structure is mapped into the cylindrical struc-

ture of Fig. 1. with parameters:

As the capacity matrix is preserved by a conformal mapping,

it results that the Maxwell capacitance matrix of the system

in Fig. 2 is the same as the capacitance matrix of the system

in Fig. 1.

In the case where we have a structure consisting of p

conducting strips placed on a dielectric substrate inside a

ground box, we must have only electric walls on all the

box sides. This is why we consider, for the beginning, the

symmetrical structure given in Fig. 3, but with anti symmetrical

potentials. This assures an electric wall along the Oy’ axis. Let

C(2$’I be the capacity matrix of the periodic 2p structure given

in Fig. 3. Then, the capacitance matrix of the boxed p-strips

sbucture is given by relation

(-j’) = C@’)– ($#j+l, i = 1,.. . ,P.
%,3 %,~

(2.3)

By taking a symmetrical charge on the strips of the structure

in Fig. 3, we can obtain also the capacity matrix of the

structure consisting of n strips placed inside a box with

magnetic lateral sides in the form

III. ANALYSIS OF THE CYLINDRICAL STRUCTURE

We consider the solutions of the cylindrical multiconductor

transmission line problem in the “quasi-static” approximation,

i.e. for the frequency range in which propagation may be

regarded as quasi TEM. Under quasi-TEM approximation,

the analysis of a coupled microstrip line with a nonmagnetic
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Pig. 3. Planar strncture with antisymmetricat excitation used to analyze tbe

boxed line.

material is reduced to that of the capacitance matrix per unit

length.

In the quasi-TEM state, the electric field in domains D1 and

Dz can be expressed with the aid of the electrostatic potentials
Vc)(z, g), v-qz, y).

By the method of the separation of the variables in cylin-

drical coordinates, (r, ~) V(lJ and V(2) can be generally

expressed as

The two potential functions V(l) (r, ~), V(2) (r, #) are solu-

tions of the Laplace equation in domains DI, D2, respectively,

satisfying the boundary conditions on the inner and on the

ground surfaces V(lJ (T-l, ~) = O and V(2) (7-2, #) = O and the

continuity on the circuit surface

V(lJ(l,@) = V(2)(l,@) = r + ~(A~cosn#+ B~sinn#).
n=l

(3.2)

In (3.1) we have denoted

()in ~
R;(r, rl, T2) = —

()
ln~’

(:)”+ (%)”

‘:(’’”1’’2)= (:)n - (a)n”

(3.3)

The real constants 17,AL, B:, (n = 1,.. ., co) will be

determined by imposing the remaining boundary conditions

on the circuit surface. Thus, we must have

and

W(2)(1,4) + Jwlj 4) =()
P(+)= –’52 .& & ‘

4~(&>%+l)>j =l,..., N. (3.5)

We denoted Vj the potential of the strip (aj, bj ) and p(~) is

the surface charge density along the circuit surface. The total

charge on the circuit circle on the arc (al, #) is

Q(4)=/4P(@’)@’
al

4

/[

ml)(l,fj’) ~@2) (1, d) ~d,,—— El
al i%- “–E2 f% 1

(3.6)

Let U(l) (r, #), U(2) (r, #) be the harmonic conjugate func-

tions, i.e. the flux functions, ~o~u~$ potentials V(l) (r, #),

— = ;= (j = 1,2), and conse-V(2) (r, ~). We have a~~)

quently (3.6) can be written

– (&@(l,al) -- &2u(ql,a1 )). (3.7)

Hence, the boundary condition (3.5) becomes

where qi is the charge on the strip (aj, @j) and ‘Y(s1 + S2) =

EIU(l)(l, al) — S2U(2J(1, al) is a constant.

The Cauchy-Riemann equations in polar coordinates enable

us to write the flux functions in the two domains D1, D2 as

U(j) (r, +)

- ~fP
= in rj

m

+ ~R~(A~sinn# -- B~cosn#), j = 1,2.
n=l

(3.9)

Consequently, the boundary condition (3.8) along the slots

becomes

~ (1 + 6(n)) (l?~cosn#J - A~sinn#)
n=l

= - (e, + &z)-’(“,lt_(b-al ~qt27 x) –7)

1=1 1=1

@~(L)%+l)> j=l,..., N, (3.10)

where

2&l r?
6(n) = — —

2ez r?
Zn +- — (3.11)

&l+q I—rl e1+c2 l—r~n’

and the constant r has been expressed in the form

~ ~ XL1 m——
27r(&l + &z)&* ‘
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where

( E2 El
&*= —

)

— . (&, +&Jl,
in r~ – in r~

(3.12)

in terms of the total charge on strips.

The unknown quantities in the representation formulae

(3. 1) and (3.9) are the coefficients r, AL, B;; the dual series

equations for determining them are given by (3.4) and (3. 10).

IV. ANALYTICAL APPROACH TO THE SOLUTION

OF THE DUAL SERIES EQUATION SYSTEM AND

DETERMINATION OF THE CAPACITANCE MATRIX

We shall transform the series Equations (3.4) and (3.10) by

putting into evidence their singular part. Thus, we first consider

the new unknown constants An, Bn, given by the relation

AL –iB: = (An – iBn) . (1 – q(n)), (4.1)

where

6(n)
q(n) =

1 + 6(n)’
q(n) = O(T7 + r~”), n 4 co, (4.2)

and i is the imaginary unit.

The two series equations become

m

r + ~(Am cos n.1#+ B. sin mj) = fj(#),

n=l

#=(~J,Bj)j j=l,..., N, (4.3)

~(A~sinn#- &cosnq5) =gj(q$) +v,

n=l

4G(P,, CU,+1), j=l,...,~, (4.4)

where we have denoted
cc

.fJ(d) = Y + ~ q(n)(A~ cosnq$ + B. sinn~),
n=l

(
j

#kY, ~ql . (45)
9j(4) = (cl + E2)-1 E 27r x)

1=1 1=1

In fact, as can be seen from (4.2) we separated in the left-

hand sides of these relations the singular parts of the series

equations. These singular components are responsible for the

behaviour of the potential function at the strip edges.

We consider, for the beginning, the right-hand sides of (4.3)

and (4.4) as being known. Then, we introduce the complex-

variable function:
m

F(z) = 17– iy + ~(An – iBn)zn, (4.6)
n=l

defined in the domain IZI <1. Then, the dual series equations

(4.3) and (4.4) can be written in the form

{

Re{$’(z)} = jj(g$) for z E (aj, bJ), j = I,..., IV,

Im{~(~)} =gj(d) for z e (bJ, aj+l), j = 1,. ... N.
(4.7)

The relations (4.7) yield the boundary values along the unit

circle of the real part (along the strips) and the imaginary part

(along the slots) of the analytic function I’(z). The problem of

determining the function F(z) by means of these conditions

is known as a Volterra problem [18], [10]. In order to obtain

the solution F(z) we consider the auxiliary function

,=1(HH(2) = fi e-’+

where

(4.8)

Along the unit circle we have

{

]H(z’)1
~(~’) = ~ l~(zl)l

on the arc (bJ, aj+l),

on the arc (aJ, b~).
(4.9)

We now define a new unknown function

F(z)
G(z) = -

zH(z) “
(4.10)

Re{R(J)}Along the strips we have Re{G(..z’) } = – ,H[:,), and along

lm{F’(~’)] . Then, (4.7) enables US tothe slots Re{G(#)} = lH(Z)l

determine the values of the real part of the function G() along

the whole unit circle

Re{G(z’)} = –1~(~’)1-1 “ .f~(~)

for z’ = e’” @ arc(a~, bj), (4.11)

Re{G(.z’)} = l~(~’)l-l.gj(d),

for z’ = e’d @arc(bj, aj+l). (4.12)

This is a Dirichlet boundary-value problem for the real part

of the complex function G(z). The complex function G(z) can

be explicitated by means of Schwartz’s formula [18]–[20]; this

yields the function F(z) = iH(z)G(z):

+-f /
9.7(4) ~2, +r+i7

IH(z’)I(z’ -z) —
}

H(0) ‘
(4.13)

J=l
b~a~+l

where aj bj and bj aj +1 are symbols for the arc(aj, bj ) and

arc(bj, af+l); H(0) is the complex conjugate of H(0); and ~

is defined as in (4.11) or (4.12).

The unknown coefficients An, Bn are in fact the Mac Laurin

expansion coefficients of the functions F(z). The infinite

linear system for their determination results by matching the

coefficient of z n (n = 1, 2, ...) on the two sides of relation

(4. 13). We shall write this system in the matrix form

R< = S; + T~, (4.14)

where
-t
x =( A1, B1, A2, B2, ...),
-t
v = (Vi,...,vne),
-t
q =(ql, . . ..k?)< (4.15)

The linear system (4. 14) is explicitated in the Appendix.
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Fig. 4. Cross-section of a three-layer (two-snrface) cylindrical multicondnc-
tor line.

The function F(z) has a definite physical meaning in the

case q(n) = O (i.e. rl e O, rz ~ 03): it is just the complex

potential function I’(z) = V + W. Therefore, it must be finite

along the unit circle. Thus, to compensate for the singularities

of the function l+(z) in the ak points, the expression in braces

in (4.13) must vanish in all these points. Hence, we obtain the

existence conditions:

k=l,..., N. (4.16)

The coefficient of Z“ in the Mac Laurin expansion must be

equal to F’(O) = r – ZT; this yields an additional compatibility

condition besides the relations (4. 16). All the N + 1 compat-

ibility conditions have the same imaginary part, which is in

fact an identity. We eliminate the constant ~ and finally the

compatibility conditions (4. 16) can be written in matrix form

Again, the linear system (4. 17) is explicitly given in the

Appendix.

If we eliminate the unknown infinite vector = between the

(4. 14) and (4. 17) we finally obtain the capacitance matrix of

the given system:

C=(D. R-l. T–B)-l-(A– D. R-%). (4.18)

This relation gives an exact expression of the capacitance

matrix. To obtain a numerical estimation we must truncate

the infinite matrices. The good convergence of the method is

assured by the function q(n) which enters into the terms of

the matrix D.

V. THE CASE OF Two CIRCUIT SURFACES

We outline now how the method applies to the case where

more circuit surfaces are present. For the sake of simplicity,

we only consider a line with two circuit surfaces; the general

case can be dealt with in a similar way. The structure is

shown in Fig. 4. It consists of four surfaces SO, SI, S2, S3 of

radii TO,rl, rz, 7-3, respectively. The cylindrical surfaces SO

and Sb are grounded and the surfaces S1 and S2, separate

regions D1, D2, D3 filled with different dielectrics (of relative

dielectric constants S1, szand =3). On the circuit surface S1 are

placed iVl conducting strips characterized by angles Qlj, ,L?13

(j= l,.. ., Nl) while on the S2 circles are placed N2 con-

ducting strips of angular abscissa a.zj, ,6zj (j = 1, ..., N2).

We denote by Vt~)the potential function in the domain Dj.

Then, we have

V(Q(T, ~) = r(l)R;(~, T0,7-1)
m

+ ~ R; (r, TO,TI)(A~l) cos no + B~(lJ sin n+)
n=l

rl)<r<rl, (5.1)

v(2) (r, f) = r(2)R; (7-,71,7-2)
cc

+ ~ R; (T, TI, 7-2)(A~2) cos T@ + B:(2) sin nq$)
?Z=l

= r(l) R;(r, 7-2,?-1)

+ ~ R; (T, 72, rl) (AL(l) cos wb + BL(l) sin d)

n=l

rl < r < T2, (5.2)

w) (?-,~) = 17(2)R; (r, ~3, ~2)
cc

+ ~ R; (r, 7-3, r2) (A~2) cos nqb + B:(z) sin nq$)
‘n=l

‘rZ < r < ?yJ. (5.3)

These expressions ensure that the potential function van-

ishes on the grounded surfaces and is continuous in the whole

structure. Along the circuit surface we also have:

‘2 u(z)(r, (/)) – &;U(l) (~>4)
El + 62

= ~ [I + 611(n)] (z?~’)cosn@- A$$)sinn@)
n=l

cc

+ ~ h2(n) (B$) cos n~ – Af) sin nq$)
n=l

Q(1)

27r(&l + &z)
4)

‘3 UW(?’> q!))– &=u(Z)(r> 4)
&2 + &3

= ~6zl(n)(B$)cosnq$- A~l)sinr@)
n=l

(5.4)

m

+ ~ [1 + 622(n)] (Bf) cos nd – A$) sin no)
n=l

Q(2)
—

27r(&’2+ &3)
~> (5.5)
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where

2EJ
~zn

2Ej+l @
6,1 (n) =

J–1 J
2n

&j + S3+1 7’3 -7-:1 +
Zn 1

&, + @j+l r;~l — 7-j

(.7’ = 1>2), (5.6)

2Es T? . T;
&z(?t) = — Zn , 621 =

El + E2

2n —---612, (5.7)
El + 52 ~~ — ‘r2 62 + E3

- (- -)

Q(l) ~z + El

21r =
r(l) _ Sr(z),

in 3 in 2 in 3
7“1 ro ?-1

()

~ = ‘3 ~ ‘2 r(2) ‘2 ~(l)
2T

(5.8)
in 9 in 2 in 2

7-2 7-1 7-1

The remaining boundary conditions give the system of dual

series equations for determining the coefficients An, Bm in the

form

r(~) +
E(
m A:) cos nqi + B$) sin n~

)

de (W.j> ii,), (j=L...,~~) (5.9)

+ +r),

(5.10)

In the above equations the superscript r takes the value

7 = 1 for the circle S1 and the value r = 2 for the other

circuit surface. The system of equations (5.9) and (5.10) is

written in a form suitable for applying the method developed

in Section IV: the singular part of the integral equation is

separated in the left-hand side of this equations, where the

functions qll (n) ,. ... 7?22(n) are determined in terms of the
radii ro, ..., r3 and of dielectric constants Cl, E2, e3.

Finally, we obtain the compatibility conditions

_(1)
Dllx

-[2) _(1) -(2) -(1)
+ D12X = A1l V + A12 V + Bllq

_(z)
+B12q

~(1)
D21X

~(z) _.,(1)
+D22X =A21V

+(2)
+ A22v

-(1)
+ B21 q

–(2)
+B22q (5.11)

and also two infinite systems of equations for determining the

two sets of Fourier coefficients
–(1)

Rllx
-.(2) ~(l)

+R12x = s~~v
-(2)

+ S12V
+(1)

+Tllq

~(1)
R21 X

-(2)
+ R22 X

~(z)
= S21V

-(2) ~(1)
+ S22V +T21q

_(2)
+ T22 q (5.12)

-(1) -(2) between
Elimination of infinite unknown vectors x , x

the systems (5. 11) and (5. 12) yields the desired Maxwell

capacitance matrix of the structure.

VI. MULTILAYERED MULTICONDUCTOR STRUCTURES

In order to show how our method applies in the case of

multilayered multiconductor structures we consider the case of

strips on a suspended substrate. The geometry of the problem

is given in Fig. 4. The domains D1, D3 are filled with air

(F1 = E3 = 1) and the strips are placed on the surface S2. In

this case we shall consider again the expression of the potential

given in Section V. There are no charges along the circle S1,

hence the relation (A2.7) yields:

(1+ 611(n)) (A$) - iB~l))

+ h(n) (A~2) – iB$)
)

= o, (6.1)

Q(1) = o (6.2)

The relations (6. 1) and (6.2) determine the coefficients

‘2) – iBY) and alsoA(l) – iB~l) in terms of the coefficients An

co~fficient r(l) as a function of I’(z). Finally, the boundary

conditions along the circuit surface S2 take the form (4.3) and

(4.4) where

6(n) = &2(n) –
6~2(n) . f5ZI(n)

1 + ti~~(n) ‘

1 (ES EZ
E*=— —-—+——— — E;

‘Z+e3 lnQ in ~
T2 7-1

(6.3)

(6.4)

The solution is obtained by the relations given in Section IV

for the above values of parameters. The general case of

multilayered structures can be treated in the same way; in

fact, the solution of the problem is reduced to the one for a

single layer, but with proper coefficients 6(n) end E*.

VII. NUMERICAL RESULTS

The theory developed in the previous sections was imple-

mented into a computer program written in the MATHCAD

language running on a PC-AT 486DX. The clock frequency

was 25 MHz and the program operates with 15 significant

digits. We applied this program to various test problems.

1) In order to compare the results given by this method with

some exact analytical formulae we considered the case

of a single strip on a cylindrical stripline-like microstrip

transmission line. In this case analytical formulae are

available for capacitances expressed in terms of elliptic

functions [11], We found very good agreement in both
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cases. Thus, for example, if we take

h = 1.477575743, rl = e-h, r2 = eh,

a!2 = –/?1 = 7r/3, /32 = -al = 2x/3,

the method gives

C(l, 1) = 15.795598577, C(l, 2) = –1.302715389,

by considering only 6 terms An, Bn. These results coin-

cide within 10 digits with those given by the analytical

formulae.

2) In the case of a symmetrical strip of 2c-widths, inside

a L x (hl + h2 ) rectangular box we compared the

results given by our method with the results obtained

in [12] on the basis of an analytical approach based on

Carleman-type singular integral equation. These results

are also compared with the values obtained previously

[16] by using two or three different methods: transverse

modal analysis (TMA), Potential Theory (PT), method

of moments (MM), and approximate conformal map-

ping (ACM). The characteristic impedance is given in

Table I for various values of geometrical and electrical

parameters.

The results are in good agreement with those obtained

previously. Due to the fact that we must consider on

the circle a structure with two strips, the number of

coefficients involved in our analysis is about 20.

3) Comparison with the spectral-domain method: A number

of planar structures were analysed with the present

method, and the results compared with those obtained

from a spectral-domain method quasi-TEM technique

for multiconductor lines on multilayered dielectric sub-

strates [5], [6]. The implementation described in [6]

makes use of edge-singular basis functions for the strip

charge density; the spectral-domain superposition inte-

grals are evaluated by turning them into discrete sum,

which are then truncated according to a relative conver-

gence principle. The spectrum is discretized by imposing

periodic boundary conditions or by considering a line

laterally bounded by electric or magnetic walls. As a

first set of test structures, three four-conductor coupled

microstrip lines were chosen with uniform spacing sand

strip width w; periodic boundary conditions were im-

posed, with the line centered into a box of total width

4 w + 5 s. The substrate dielectric constant is e. = 9

and the substrate thickness is h. The line dimensions

were chosen as follows:

Structure 1: s/h = (7r/2 – 2/3)/ ln3 % 0.823;

w/h = 2/31n3 % 0.607

Structure 2: s/h = (7r/2 – l/2)/ln2 = 1.545;

w/h = l/21n2 z 0.721

Structure 3: s/h = (7r/2 – 1/3)/ in 3/2 % 3.052;

w/h = l/31n3/2 E 0,822

Thus, from structure 1 to structure 3 the coupling be-

tween strips decreases and the coupling to the ground

plane increases. Since the structure is strictly periodic,

the capacitance element Ci,~ only depends on Ii – j 1.

The results obtained are summarized in Table II; only

the first row of the capacit ante matrix is shown. The

spectral-domain results were computed with 10 basis

functions per strip and a number of spatial frequency

samples related to the re~ative convergence criterion.

The agreement between the two methods is fairly good

both for the tightly coupled and for the loosely coupled

line; however, the accuracy achieved by spectral-domain

method in estimating the coupling between distant lines

may be critical.

In order to see how the method works in the case

of a line with a large number of strips we consider a

cylindrical microstrip line with 32 equally spaced strips.

The strips has the same central angle and this is equal to

the slot central angle. We take rl = 0.5, S1 = 9,52 = 1.

The same structure was analysed through the spectral

domain method by first turning it into a planar one by

means of conformal mapping. The results obtained from

the two methods are reported by showing the first row

only of the capacitance matrix; for C(I, j), 16< j <32

one must remember that C(l, j) = C(I, 34 – j), j =

18.. .32. The result in brackets was derived from the

spectral domain method; the other from the present

approach. One has

C(1> 1) = 12.909 [12.953]

C(1> 2) = -4.074 [–4.066]

C(1> 3) = –0.695[-0.678]

C(1,4) = –0.233[–0.218]

C(I, 5) = –0.095[–0.083]

C(l, 6) = –0.044[-0.034]

C(1> 7) = –0.022[-0.014]

C(l, 8) = –0.012[-0.006]

C(l, 9) = –0.0077[-0.0024]

C(1> 10) = –0.0055[-0.0011]

C(I, 11) = –0.0042[-0.0004]

C(1> 12) = –0.0035[-0.0002]

c(l, 13) = –0.0031[-0.00005]

C(1> 14) = –0.0028[-0.00005]

C(1> 15) = –0.0026[+0.00001]

C(l, 16) = –0.0025[–0.00003]

C(I, 17) = –0.0025[+0.00002]

The computation with the spectral domain method was

carried out with 5 basis functions per strip. Also in

this case, the accuracy ach~ieved by the spectral method

becomes poor for loosely coupled strips (notice that for

j > 11 the result from this spectral domain method
is hardly meaningful, although the computation was

performed in double precision). The above analysis

required about 15 minutes CPU both for the MATH CAD

implementation and for the FORTRAN implementation

of the spectral domain method running on a VAX

STATION 3100.
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TABLE I
COMPARISONOFZO FORA SINGLESTRIPWITHEXISTINGVALUES

hJhl L12c Zcfhl ZIE z !2 z Cl [12~

5 10 1 9.6 I 49.153 I 49.08 48.4 48.5 I -

9 10
5 10 0.8 9.6 54.52 54.45 53.8 53.9 I -
5 6 1 9.6 48.62 48.60 47.9 48.5 I -

2 l– 9.6 33.72 I 33.63 33.1 32.8 I - 1

5 10 0.4 9.6 70.40 70.38 69.7 70.9 -

9 10 1 6.0 61.32 61.24 60.49 - 62.71 60.97

9 10 4 6.0 26.26 26.09 25.95 - 27.30 26.03

9 10 0.4 6.0 87.04 87.41 86.30 - 91.37 89.91

TABLE II

x PRESENTAPPROACH:b: SPECTRALDOMAINMETHOD

Structure Method c,, c,~ C,q c,~

1 14.762 -1.866 -0.198 -1.866

1 : 14.792 -1.904 -0.224 -1.904
2 15.439 -0.731 -0.093 -0.731
2 : 15.430 -0.745 -0.106 -0.745
3 16.3645 -0.1509 -0.0378 -0.1509
3 : 16.369 -0.157 -0.044 -0.157

TABLE III
THEPROPAGATIONCONSTANTFORACYLINDRICALSTRUCTUREWITHSIX STRIPSLOCATEDONTwo LAYERS

Separation Number of 1-St 2-rid 3-rd 4-th 5-th 6-th

angle y coefficients mode mode mode mode mode mode

(degrees) [17]

0.00 12 2.045162 2.194719 2.389983 3.073252 3.152087 3.403444

0.00 16 2.04508 2.194718 2.39001 3.073376 3.152093 3.403722

0.00 [17] 2.0722 2.1945 2.3896 3.0725 3.1504 3.4138
35.86 12 2.052133 2.234518 2.417062 2.686693 3.102286 3.354923
35.86 16 2.052069 2.234541 2.417061 2.686714 3.102287 3.35495
35.86 [17] 2.0768 2.2354 2.4215 2.6929 3.1001 3.3641

106.17 12 2.093422 2.275377 2.337481 2.430684 2.78487 2.996957
106.17 2.09335 2.2754 2.33738 2.430698 2.784814 2.996659
106.17 [::] 2.1075 2.2978 2.3393 2.4311 2.7887 3.0065

4) We applied the method developed in Section V to the

cylindrical multiconductor transmission line having two

layers ofstrips located atrl =2andrz =3. Each of the

two layers of strips consists in three strips of 10.195°

central half angle and the strips on the same r circle

are 20.39° apart. We denote by -y the separation angle
between the strips (~zj = ~lj+~,~zj =61j +7; .7 =

1,2,3). This problem was considered in [17] by an

iterative technique in spectral domain. In Table III we

give the propagation constants obtained by applying the

present method with 12 and 16, respectively, unknown

coefficients on every layer and for three values of

separation angle. For comparison the values given in

[17] are also shown. It is to be noted that the present

method and the results obtained in [17] are in very good

agreement.

5) As the last example, we computed the characteristic

impedance Z and the effective dielectric constant Ceef

for a pair of coupled strips on a suspended substrate

inside a rectangular box. The cross-section of a boxed

microstrip line is shown in Fig. 5. The geometry consid-

ered is L = 5 mm, hl = 3.635 mm, h2 = 0.635 mm,

h3 = 5 mm, 2C = 1 mm, the distance between strips

is 0.1 mm, El = S3 = 1, S2 = 9.6. This problem
was considered in [15] on a spectral domain formula-

tion combined with some methods for speeding up the

convergence.

We truncated the infinite series at 24 terms and in Table IV

the obtained results are compared with those given in [15].

Again, very good agreement is found between the present

method and the results given in [15].

VIII. CONCLUSION

A new method for determining the Maxwell capacitance

matrix of a coupled multilayer multiconductor microstrip
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l-h,

Fig. 5. Boxed suspended coupled stips

TABLE IV
CHARACTERISTICIMPEDANCE AND EFFECTIVE DIELECTRIC

CONSTANTFOR SUSPENDEDCOUPLED STRIPS

Present method Results given in [15]
z~ 30.835936 fl 30.8360 fi2
z eveu 182.87994 C2 182.87994 S2

&efr~d 4.608939 4.608930

E,frevm 2.1366193 2.136619

line is given. The method applies to the case of cylindrical

structures as well as to the case of planar lines. The method

is based on solving the singular part of the coupled series

equations of the problem by means of a Volterra boundary-

value problem; the rigorous solution is expressed by means

of some infinite matrices that have very good convergence

properties. Applications are shown to several structures: iso-

lated and coupled strips inside rectangular boxes, multistrip

structures, suspended lines, and cylindrical structures with two

layers of strips. The method allows the capacitance matrix to

be evaluated with very high accuracy and is computationally

efficient also for the case of multistrip and multilayered lines.

APPENDIX

We give in this Appendix the computation relations involved

in Section IV. The Mac Laurin expansion of the function

l?(z) /17(z) must match the corresponding coefficients re-

sulting in the expansion of the brace in (4.13). We get for
m=o:

r–iT
~ = - ~AC(O,j)~ + (El +s,)

j=l

n=l

+r+iv

H(0) ‘
(Al)

and form =1,2, . . .

m—1

– 2(I’ – i~)K1(m) – 2 ~ IIl(m – n)(An – iBn)

n=l

+ &(Am - illm) = - ~~AC(m,j)~
j=,l

N

(

N

+ (eI + .52) ~ BC(m, j) ~~ qt – BCS(m, j) ~ qZ
J=l 1=1 1=1 )

- ~q(~)[(A.- z&)~z(n - m)+ (A + %)
‘n=l

x KI(n + m)] (A.2)

Here we have denoted

J “1 dz’
AC(m, j) = ~ — ——

IH(z!)I Z’W’+l

aj bj

i

/

P, ~–imo
— ——

~, lH(@)l
d~, m= O,l,.. . (A.3)

T

./

1 dz’
BC(m, j) = ~ — —

IH(z’)I ;’m+l

J (b-a, 1 d.z’
BCS(m, j) = ~ —-——

7r IH(z’)1 z’~+1
b3a3+l

i

J

a3+I @ _ al e-im4
=—

7r [H(e’~)[
dq5, m= O,l,...

T 03

(A.5)

1—7—-1
K~ (r) = ~

/
—--- d,z’,

27r ~e ;H(z’)\
7. = (),1,2, .,. (A.6)

J
/r—l

K~(r) = J —
27r (jle l;(z’)ld~” r = 1’2’ “ “ “

(A.7)

In relations (A.6), (A.7) C. = lJ~=l (a~, bj ) i.e. the set of all

strips; we shall also denote by C the unit circle.

Likewise, the compatibility conditions (4. 16) can be written

in the form

N

rcOs J – ~sin~ – ~A’(k, j)Vj + (El + S2)-1

j=l

co

- ~ n(n){Re{Il(k,n) - 12(k,TL)}&

–Im{12(k, n) + ll(k, n)}Z3n} = O, k = 1,2,... ,lV

(A.8)
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Here we have denoted

II(O) = eid,

/

B, ~tg+
A’(k,,7) = + ~, ,~(eid)l ‘~~

1

/

@,+l ~tgftyl

~’(ftj) = ~ ~,
lH(e’@)/ “’

/

“’+’ @ – al ctg~ ~~,
Bs’(k, j) ==~ —

27r p, 27r lH(e@)j

(k, j=l,..., fv),

f—n
Il(k, n) == ~

/

.23
d.z’ ,

27r CC III(z’)l(z’ – a~)

(k= l,... N;n=l,2,. . .)>

12(IL n) = –~
/

z In

dz’,
27r ~e III(,z’)I(z’ – a~)

(k=l,..., N;n=o,l,... )

(A.9)

(A.1O)

(All)

(A.12)

(A.13)

(A.14)

The numerical evaluation of the integrals (A.3-A.5) and

(A. 1O-A. 12) can be performed by using a Chebyshev-type

integration formula

/

15— F(r#)d~ =
7ro

(~F p-clo, (2j-l)Tr+e+a

2 2m )2“

(A.15)

The complex integrals (A.6–A.7) and (A. 13–A. 14) along the

set C. of the strips can be replaced by integrals along a circle

C’z of radius greater than 1, or along a circle Cl inside the

unit circle. Thus, for example, we have by means of Cauchy’s

theorem

!
-/% In
/,

dz!=–;
/

.2
dz’

~2 H(z’)(z’ – a~) 2 C, IH(Z’)I(Z’ – Q)

/

.zIn

+ dz’,
c–c= l~(z’)l(z’ – u)

(A.16)

/

z In
dz’ = ?

J

z /n

dz’
~, H(z’)(z’ – a~) z C, IH(2’) 1(2’ – a~)

J
~Jn

+ dz’ .
C–ce 1~(’20(~– ~k)

(A.17)

Due to residue theorem the integral along the C’z circle

vanishes for n < 0 and the integral along the Cl contour is

zero for n ~ O. Hence, the difference of the relations (A. 16)

and (A. 17) yields

1 z /n ./n

dz’ = &{ dz’,
cc IH(z’)I(z’ – a~) 22 C2 H(z’)(z’ – ak)

n=(), l,... (A.18)

and

! z
/—n 1

/

~l—n
dz’,

c= IH(z’)1(2’ – a~)
d.z’ =‘~ c,, H(z1)(z’ – a~)

n=l,z,... (A.19)

The integrals along the circles Cl and C2 can be computed

by using the trapezoidal rule and the Fast Fourier Transform

algorithm.
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